

Abstract
A location service provides the means of

keeping location info on objects. In a Wide
Area Network, the location service is often a
critical part and is likely to be implemented as
a collection of servers distributed across multi-
ple hosts. In such a collection adding and re-
moving servers is complicated if the location
information is partitioned among the servers
instead of being replicated and if no service
interruption can be tolerated. In this paper we
are interested in shutting down and removing a
server from such a collection. The solution we
propose takes care of redistributing and trans-
ferring location data to remaining servers. It
handles incoming clients’ requests during the
termination process and removes the server
from the collection. This paper shows that a
server can gracefully shutdown, while guaran-
teeing continuous availability of the location
service.

1 Introduction
Services in distributed systems are often

implemented by means of multiple cooperating
servers. A potential problem in such systems is
that changes in the configuration of the set of
servers may require temporary deactivation of
the service. When high availability is of vital
importance, special techniques need to be ap-
plied to allow adding or removing servers
without disrupting the service.

A location service is an important compo-
nent of many distributed systems. It provides
the means of keeping location information on
objects while they move between locations. In
a wide-area network, a location service is likely
to be implemented by means of a collection of
servers that is distributed across multiple hosts.
Managing such a collection can be quite com-
plex, especially when there are many servers
and continuity of the service is required, even
in the presence of adding and removing servers.

This paper deals with the process of re-
moving a server from a set of servers that im-
plements a worldwide location service. We
discuss various techniques that allow the server
to distribute its content to remaining servers

before shutting down permanently. We focus
on the Globe Location Service.

The remainder of this paper is organized as
follows. Section 2 gives background on the
Globe Location Service, which acts as a refer-
ence point for our discussion. Section 3 de-
scribes the problem of gracefully terminating
servers. Section 4 provides a detailed discus-
sion on the issues of redistributing partitioned
data and handling clients’ requests. It also gives
an implementation design. Section 5 analyzes
our solution in terms of concurrency of shut-
downs and fault tolerance to server crashes.
Section 6 compares our solution to approaches
taken in the related work. Finally, section 7
outlines our conclusions and presents future
work.

2 Background on the
Globe Location Service

2.1 The Globe Location Service
in Brief

Globe is a large-scale distributed system
designed to support trillions of objects. One
critical part is the Globe Location Service
(GLS) [2,6], which is responsible for tracking
and locating mobile and possibly replicated
objects. Every object is assigned a unique ob-
ject identifier and can be accessed at its contact
addresses, which are the physical locations of
its replicas (e.g. IP addresses and port num-
bers). GLS is responsible for resolving an ob-
ject identifier into a contact address.

GLS is organized as a hierarchical struc-
ture of domains, as shown in Figure 1. The top
level domain spans the entire network. Each
domain D may be partitioned into smaller child
domains, turning D into their parent domain. A
lowest-level domain typically corresponds to a
campus or a city.

Each domain is represented by at least one
Location Server (LS), shown as a circle in Fig-
ure 1. In many cases, several LSs compose a
domain and are jointly responsible for provid-
ing storage capacity and for handling requests
for that domain. For example, we anticipate
that the top-level domain, which needs to keep

Transparent Server Shutdown in a Wide-Area
Location Service

Spyros Voulgaris, Aline Baggio, Gerco Ballintijn, Maarten van Steen
{spyros, baggio, gerco, steen}@cs.vu.nl

location information on each object in the
whole network, will probably be composed of
thousands of LSs.

Each domain D keeps location information
on objects that reside in the area covered by D.
This information is either the object’s contact
address or a pointer, we call forwarding
pointer, that refers to a child domain. Location
information is stored by a domain’s LSs in a
structure called contact record (CR). For each
object in a domain, there is exactly one CR.
This means that the location information is
partitioned among LSs.

2.2 The Operations
Information about objects can be retrieved

or set using lookup, insert and delete requests.
The algorithmic details of these operations
have been published elsewhere [2,3,4,5,6].
However, to understand the problem of remov-
ing a LS from a domain, we need to explain the
essence of these operations:

Lookup: Given the identifier for an object
O a lookup request returns a contact address for
O, if found. When receiving a lookup request, a
LS S having a CR for O that contains a contact
address returns it to the requester. Instead, if
the CR for O contains a forwarding pointer, the
request is propagated to a LS in the correspond-
ing child domain. Finally if S has no CR for O,
it propagates the request to a LS in its parent
domain. In the worst case, a lookup request for
O is first forwarded to higher-level domains, up
until a CR is found for this object. Then the
request follows a path of forwarding pointers
down to the LS where the contact address is
stored.

Insert: An insert request is initiated at one
of the LSs of a lowest-level domain and even-
tually results in storing a new contact address.
The operation consists of two phases. An up-
ward phase recursively propagates the insert
request up in the domain hierarchy until it
reaches either the first domain that already con-
tains a CR for that object or the root. A down-
ward phase installs the contact address and
forwarding pointers at the appropriate levels,

completing the recursion. The insert operation
in a LS of a domain D cannot complete before
the request to D’s parent domain returns.

Delete: The delete operation is carried out
when a contact address is to be removed. The
operation is recursively propagated upwards
through the domain hierarchy until it reaches
either a domain that covers the lowest-level
domain where the object also resides, or the
root.

Insert and delete operations are together
called update operations. Lookup or update
requests can be submitted by LSs that belong
either to the parent or to a child domain. The
recursion from level to level is implemented
using RPCs. The execution of a RPC usually
involves performing another RPC at the parent,
thus leading to a chain of RPCs from the leaf
upwards, possibly to the root.

In this paper we use the term client to de-
note a LS that submits a request to a LS from
another domain. Since a domain generally has
many LSs, each one storing a fraction of the
domain’s CRs, the client has to know exactly to
which LS of a domain it should send its re-
quest. For that reason, LSs keep mapping in-
formation that tells which object identifier is
associated to which LS in a given domain.

The mapping information is locally avail-
able at the LSs. Each LS has a mapping table
per domain. The management of this mapping
information and its distribution to each LS is
achieved through a configuration service. The
configuration service makes sure that the map-
ping information is replaced in an atomic fash-
ion. The design of the configuration service
itself could be either centralized or distributed,
but this is out of the scope of this paper.

3 The Problem
The algorithms for GLS operations implic-

itly assume a stable set of LSs. We are inter-
ested in making this set more dynamic by add-
ing or removing servers. This paper concen-
trates on the latter issue: terminating a LS.

We consider unacceptable switching off
GLS for shutting down one of its LSs. Instead
we want GLS to remain (almost) continuously
available. The process of shutting down a LS
should therefore be transparent and fault toler-
ant. It involves the following three actions:
• The terminating LS should distribute its data

to (some of) the remaining LSs of the same
domain;

• The clients should update their object-
identifier-to-LS mapping information for the
domain in question;

• The terminating LS should be guaranteed to
terminate and should also be able to deter-

Domain A

Domain B Domain C

Domain HDomain GDom. FDomain EDomain D

: Location Server : Domain

Figure 1: The domain hierarchy in GLS

ministically find out when the termination
process has completed.

Figure 2 shows an object’s CR’s migration
to a new LS and a client’s switch to the new
mapping. What remains to be defined are the
order and the details of these actions, so that it
provides seamless service with low overhead in
time and resources.

Migrating data between two servers and
switching a client’s mapping are rather simple
problems, if taken independently. The case we
are discussing is not so trivial though, due to
the following constraints:
• Lookup and update requests keep coming

during the termination procedure and a deci-
sion has to be made whether they should be
handled and by which LS;

• It is not clear when clients should assume
that a LS has been removed, i.e. when to
change their mapping;

• Updating mapping information is assumed to
be atomic: a client learns the mapping to the
new set of LSs for a specific domain for all
objects together, and not on a per object ba-
sis. However, different clients are allowed to
update their mappings independently.

4 Solutions

4.1 Options and Policies
Assume a LS is currently terminating and

needs to distribute its CRs. A few options need
to be discussed before describing the actual
solutions. First, there are two ways to distribute
the terminating LS’s CRs to the remaining LSs:
pushing and pulling. Pushing means that the
terminating LS distributes its CRs to the appro-
priate LSs. Pulling means that a remaining LS
S1 fetches CRs from the terminating LS S2.
This implies that S1 is notified of S2’s termina-
tion. From now on we will refer to these two
policies respectively as push-CRs and pull-CRs.

Second, the distribution of the new map-
ping information can be done in two analogous
ways: by pushing or pulling. Pushing means
that the configuration service sends new map-
ping information to clients. Pushing can occur
at the beginning or at the end of the termination
procedure. We call it respectively push-
mapping-at-start and push-mapping-at-end.
Pulling means that clients request the new
mapping information at their own initiative.
We call it pull-mapping.

Third, requests arriving at a LS during the
termination procedure can be handled in vari-
ous ways. For instance they can be ignored,
rejected, stalled, forwarded, or serviced.

Our analysis towards an optimal solution
can be viewed as an effort to fine-tune the op-
tions described above and find the best combi-
nation.

4.2 Distribution of Contact Re-
cords

If the terminating LS uses the push-CRs
policy for distributing its CRs, it starts working
immediately towards its main goal: to distribute
its content to the other LSs. However, if a RPC
of an update operation on some CR is still
pending, the terminating LS should wait until
the operation is completed. Only then can it
ship that CR to its new destination. A LS starts
shipping CRs from the moment the shutdown
procedure starts. The time needed to complete
the shutdown depends only on the number of
CRs it has to send and the speed of the network
connections to the other LSs. In addition to
minimizing the distribution time, it is also clear
for the terminating LS when the shutdown pro-
cedure is completed. Finally, the push-CRs
policy gives the terminating LS more control
over the process of shipping CRs. For example,
it can decide to compress outgoing packets and
achieve higher compression rates by putting
CRs destined for the same LS together.

With the pull-CRs policy, the terminating
LS does not ship any CRs until explicitly re-
quested to. This policy introduces three signifi-
cant drawbacks. First, the LS’s termination is
delayed if the other LSs are not pulling CRs in
a timely manner. But even if they are, there is
no decrease of the distribution time: the num-
ber of CRs to be shipped remains the same.
Second, the terminating LS looses control over
the termination procedure. It has to keep track
of which CRs have not yet been shipped and
wait until a LS pulls them before it can actually
shutdown. Third, requests sent directly to one
of the remaining LSs can be additionally de-
layed by the time it takes to pull the associated
CR from the terminating LS. Fetching a CR

S's Successor
for object O's CR

Client

Initia
l m

apping for O

New mapping for O

Mapping
Switch

DB

Terminating LS S

DB

O's CR
Migration

Figure 2: Contact Record Migration and Mapping
Switch

involves sending a message to the terminating
LS, retrieving and formatting the requested CR
there, and sending it back to the other LS. Ap-
plying some prefetching policy to pull in CRs
before they are requested approximates the
push-CRs policy, without providing any of its
advantages.

For these reasons we consider the push
policy as the most appropriate for distributing
CRs.

4.3 Handling of Requests and
Distribution of New Mapping

Two issues remain to be solved: handling
incoming lookup and update requests and dis-
tributing new mapping. As we shall see, these
two issues are highly related and affect each
other. Therefore, we will analyze them in paral-
lel.

The simplest policy is refusing any incom-
ing request during the termination procedure.
We can either ignore requests or send explicit
rejections to clients. Considering the need for
seamless operation, we want clients to learn
immediately that their request cannot be ser-
viced. Distribution of the new mapping in con-
junction with the rejecting-requests strategy
can work as follows. With the pull-mapping
policy, a client can retrieve the new mapping
from the configuration service upon a rejected
request. It can then resubmit the request to the
new LS. With the push-mapping-at-start pol-
icy, the client sends the request directly to the
new LS. In either case the request is serviced
only after the associated CR has been shipped
to the new LS. With the push-mapping-at-end
policy, the request is not serviced until the ter-
mination is completed. Only then does the cli-
ent learn about the new mapping and sends the
request to the new LS. In all three cases of
mapping distribution, there is a period during
which requests cannot be serviced. This does
not satisfy our requirement for seamless opera-
tion. Therefore, rejecting requests during ter-
mination cannot be a solution.

A different approach is having the termi-
nating LS service incoming requests until CR
shipping is over. While the LS is shipping its
CRs to other LSs, it still has copies of them in
its local storage area as well. To maintain con-
sistency, the results of update requests for CRs
that have already been shipped need to be
propagated as well to their new LSs.
Considering that the LS has to wait for all
pending updates before it can terminate, this
may put it in an indefinite waiting status: new
update requests for shipped CRs can keep
arriving. Thus this approach is inappropriate
for our situation. Indefinite waiting can be
avoided by applying a time limit, after which

by applying a time limit, after which the LS
rejects all incoming requests in order to com-
plete migration of the CRs that are still await-
ing to be shipped. However this approach ren-
ders the service unavailable for some period
and is therefore inappropriate as a solution.

Another approach that is a tradeoff be-
tween the previous two is to temporarily and
selectively service incoming requests. The ter-
minating LS starts by servicing requests for all
objects, but gradually stops servicing requests
for objects whose CRs have been shipped. The
question is when to stop servicing requests and
for which objects. As long as an object’s CR
has not been shipped, all associated requests
are serviced. In addition the terminating LS
also services lookup requests for shipped CRs
that have not been updated since their ship-
ment. Update requests for already shipped CRs
are rejected in order not to break consistency
with the CRs’ new LSs.

With this request handling, mapping dis-
tribution works as follows. Using the push-
mapping-at-start policy, clients would not take
advantage of the terminating LS’s ability to
service requests while CRs are being shipped.
No requests would be serviced neither by the
terminating server nor by the new one before
the completion of the termination. Using the
push-mapping-at-end policy, a request would
be serviced only if its associated CR has either
not been shipped yet or not been updated since
it was shipped. Using the pull-mapping policy,
a client can retrieve the new mapping when its
first request gets rejected by the terminating LS
and resubmit it immediately to the new LS.
However, getting the new mapping has an im-
pact on the client’s subsequent requests. Re-
quests concerning CRs remapped to the new
LS are directly sent to it. As a consequence, a
request regarding a non-shipped CR will be
stalled at a new LS until the CR is shipped.
This renders the service unavailable for some
CRs for a period of time. This cannot be an
acceptable solution.

4.4 Advanced Solution
Based on the discussion in the previous

section, we suggest the following solution for
providing continuously available service with
low overhead in bandwidth, delays and proc-
essing power, and a timely and guaranteed
completion of the LS’s termination. Our solu-
tion employs the push-CRs policy for distribut-
ing CRs to other LSs and the push-mapping-at-
end for distributing the new mapping to the
clients, pushing CRs first and mapping imme-
diately after CR distribution has completed. In
between the beginning of CR distribution and
its completion, the terminating LS takes on the

role of a proxy. It forwards the requests for
already shipped CRs to the appropriate LSs,
gets the replies and forwards them back to the
clients. Thus, CR migration is still transparent
to clients until it is completed.

The scenario for this solution is as follows.
A terminating LS S informs the configuration
service about its intention to shut down and
obtains the new mapping information. Based
on it, S starts shipping CRs to the appropriate
LSs, while still serving incoming requests for
the CRs that have not been shipped yet. Even
after a CR has been shipped, S keeps servicing
lookup requests for it for as long as it is still
consistent with the copy at the new LS. This
means until the first update request for that CR
is received by the terminating LS. Upon
reception of an update request for a shipped
CR, S starts acting as a proxy between any cli-
ent and the new LS for all subsequent requests
for that CR. The new mapping is finally pushed
to all the clients when all CRs have been read-
ily distributed to the new LSs, avoiding a no-
ticeable interruption in the service.

4.5 Implementation Design
For implementing the advanced solution,

we associate a status with each CR of the ter-
minating LS. The status takes one of the fol-
lowing values: LOCAL when the CR has not
been shipped yet, BEING UPDATED when an
update request is pending for that CR,
SHIPPED when it has been shipped, and NOT
IN SYNC when it has been updated after having
been shipped.

Figure 3 shows the state diagram executed
by the terminating LS. All CRs are initially
assigned the status LOCAL. Upon reception of
an update request, the associated CR’s status is
changed to BEING UPDATED. It remains in
this state as long as the update’s RPC is pend-
ing. During that time, the CR cannot be
shipped. When the update is completed, the
CR’s status is set back to LOCAL. Once
LOCAL CRs have been shipped to their new
LS, their status is changed to SHIPPED.
Lookup requests are serviced when the associ-
ated CR’s status is LOCAL, BEING
UPDATED or SHIPPED. If an update request
comes for a SHIPPED CR, the CR’s status is
changed to NOT IN SYNC, the final state of
the state diagram. From this point on, all re-
quests for that CR are forwarded to the new LS.

We are considering a multithreaded model
as the most appropriate to implement the logic
described above. Figure 4 shows the pseudo-
code for our threads. The CR Distribution
Thread is started at the beginning of the shut-
down procedure. It is devoted to shipping
LOCAL CRs to their new LSs, and marking

them as SHIPPED. A separate thread, the Re-
quest Handling Thread is spawned for each
incoming request. It services the request locally
if it is possible. Otherwise it submits the re-
quest to the associated CR’s new LS, waits for
a reply and sends it back to the client. Several
optimizations can be applied in an actual im-
plementation, such as spawning a new thread
only for update requests, or keeping a pool of
threads to service incoming requests, but this is
out of the scope of this paper

5 Further Analysis of Ad-
vanced Solution

Let us concentrate on some further features
of the advanced solution, namely concurrent
shutdowns and fault tolerance to LS crashes.

5.1 Concurrency
In a reasonably sized domain being sup-

ported by several thousands of LSs, two or
more LSs may need to terminate at the same
time. The advanced solution operates flaw-
lessly even in the case of overlapping termina-
tions of multiple LSs.

Let us take a simplified case in which just
two LSs, A and B, terminate during the same
time. Assume that A contacts the configuration
service first and starts shipping its CRs to the
rest of the LSs in its domain. Before A’s CR
migration is completed, B decides to terminate
and contacts the configuration service. B re-
ceives the new mapping, which already ex-
cludes A, and also starts shipping its own CRs
to the remaining LSs of the domain, excluding
A. Meanwhile the configuration service pushes
the new mapping, which now also excludes B,
to A. A ships the remaining of its CRs to the
LSs suggested by the latest mapping. Those

LOCAL BEING
UPDATED

SHIPPED

Update
(RPC invocation)

Update completion
(RPC return)

Ship

Update
(forwarded to

new LS)

Lookup

Lookup

Lookup

Lookup
(rejected)

Update
(rejected)

NOT IN
SYNC

Figure 3: State diagram for CRs

CR Distribution Thread

while not all CRs have been shipped
select a CR with status LOCAL
change CR status to SHIPPED
ship CR to the appropriate LS

end while
terminate

Request Handling Thread
on LOOKUP request:

if CR status is LOCAL or BEING UPDATED or SHIPPED
service request by returning the CR’s value stored locally

if CR status is OUT_OF_SYNC
submit request to the CR’s new LS
forward reply to the client

on UPDATE request:
if CR status is LOCAL

change CR status to BEING UPDATED
invoke RPC
change CR status to LOCAL

if CR status is BEING UPDATED
wait for current update completion (*)
change CR status back to BEING UPDATED
invoke RPC
change CR status to LOCAL

if CR status is SHIPPED
change CR status to NOT IN SYNC
submit request to the CR’s new LS
forward reply to the client

if CR status is NOT IN SYNC
submit request to the CR’s new LS
forward reply to the client

(*) i.e. wait for the status to go back to LOCAL

CRs of A that were al
be re-shipped by B to
according to the latest m

By induction, we
gorithm works for any
terminating LSs, provi
the domain’s LSs rema

5.2 Fault Tolera
Another problem

fault tolerance. We d
scenarios of a LS crash
LS of domain D. In the
before its termination
that the status of each
in the LS, it can just r
crashed.

In the second scen
domain D has crashed
some CRs. S can wait
until the configuration
as being unavailable a
mapping information. I
Figure 4: Pseudocode for the termination procedure
ready shipped to B will
 their new destinations,
apping.

could prove that this al-
 number of concurrently
ded that at least one of
ins alive.

nce
we need to address is
istinguish between two
. Let S be a terminating
 first scenario S crashes

is completed. Assuming
CR is persistently stored
esume from the point it

ario, another LS S’ from
, while S should send it
until either S’ restarts or
 service characterizes it
nd excludes it from the
n the latter case, when S

receives the new mapping that excludes S’, it
should redistribute all the CRs that were previ-
ously mapped to S’ to the remaining LSs.

It is important to note that the existing
GLS crash-recovery mechanisms and algo-
rithms [3] can be applied.

6 Related work
The problem that we address in this paper

resembles that of transparent failover in dis-
tributed systems. When a process fails, a
backup process takes over the service provided
by the failing process. Such a failover is often
implemented by means of a hot standby, effec-
tively introducing replication. These schemes
do not apply to our situation, as we seek solu-
tions to distribute data across remaining servers
without introducing replication.

A framework that shares some common
points with the problem described in this paper
is RaDaR [7], an architecture for a global web-
hosting service. In RaDaR, participating serv-
ers (hosts) are grouped in sets called areas,

each area having its own dedicated server
called redirector, acting as an index of the ob-
ject replicas hosted by the area’s hosts. The
redirector also keeps a mapping of the symbolic
name of an object to the (possibly multiple)
physical addresses of the hosts in its area
where a replica for that object can be found.

Migrating a replica from one host to an-
other is performed by replica creation on the
recipient host followed by replica deletion on
the source host. After the new replica is cre-
ated, the area’s redirector includes it in the
mapping. Then the old replica is first excluded
from the mapping and then deleted from the
host. Whenever a host wants to terminate, it
separately migrates each of the replicas it has
and terminates when all of them have been mi-
grated.

This approach is significantly simpler than
ours. However, it comprises a solution to a
problem for an architecture that is different in
three main aspects. First, redirectors store the
mapping in a centralized fashion for each area.
In our model each client stores the mapping
locally. Second, RaDaR’s mapping can be up-
dated independently for each replica. which is
impossible in our case. The mapping is only
updated globally, not on a per-CR basis. Third,
an object can be simultaneously mapped to
more than one replicas, on different hosts of an
area, whereas in our model a contact record is
always mapped to exactly one LS of a domain.

7 Conclusions and Future
Work

This paper has dealt with a management
issue for the Globe Location Service: how to
gracefully remove a location server from a do-
main without disrupting the operation of the
service as a whole and ensuring a timely com-
pletion of the removal procedure. The solution
consists of two parts. First, handing over the
terminating location server’s contact records to
the remaining location servers of the same do-
main; second, changing the clients’ contact-
record-to-server mapping information to reflect
the new set of location servers. Our solution
involves low delays in the servicing of requests
during the location server’s termination, adds
no significant processing to the location servers
involved, and terminates in a timely period.

The problem we addressed within the con-
text of GLS can be formulated in terms of a
more generic problem. We assume a set of
servers storing data records in a distributed
fashion. Records are partitioned across these
servers. Clients are processes that submit to the
servers requests to read or write records. A
request always concerns one record at a time.

Read is always executed locally on the server,
while write involves blocking communication
to an external server. For every request, a client
knows exactly which server to contact, based
on a locally stored mapping table. The mapping
table maps records to servers and is updated by
an independent service, the configuration ser-
vice. The problem is how to shutdown one or
more servers, distributing their data to the re-
maining ones and updating the clients’ map-
ping so that the termination procedure is fully
transparent.

A plethora of issues related to management
of the location service need to be further ex-
plored. This includes dealing with non-graceful
location server terminations, research on the
architecture of the configuration service, and
issues dealing with changes in the domain hier-
archy.

References
[1] M. van Steen, P. Homburg, A. S. Ta-

nenbaum, “Globe: A Wide-Area Distrib-
uted System”, IEEE Concurrency, pages
70-78, January 1999

[2] M. van Steen, F.J. Hauck, G. Ballintijn, A.
S. Tanenbaum, "Algorithmic Design of the
Globe Wide-Area Location Service", The
Computer Journal, 41(5):297-310, 1998.

[3] G. Ballintijn, M. van Steen, A. S. Ta-
nenbaum, "Simple Crash Recovery in a
Wide-area Location Service", Proc. 12th
Int'l. Conf. on Parallel and Distributed
Computing Systems, Fort Lauderdale, Flor-
ida, August 1999, pages 87-93

[4] G. Ballintijn, M. Sandberg, M. van Steen,
"Scheduling Concurrent RPCs in the
Globe Location Service", Proc. Third An-
nual ASCI Conference, Heijen, The Neth-
erlands, June 1997, pages 28-33

[5] A. Baggio, G. Ballintijn, M. van Steen,
"Mechanisms for Effective Caching in the
Globe Location Service", Proc. 9th ACM
SIGOPS European Workshop, Kolding,
Denmark, September 2000, pages 55-60

[6] M. van Steen, F. J. Hauck, P. Homburg,
and A. S. Tanenbaum, “Locating objects in
wide-area systems”, IEEE Communica-
tions Magazine, pages 104–109, January
1998.

[7] M. Rabinovich, A. Aggarwal, “RaDaR - A
Scalable Architecture for a Global Web-
Hosting Service”, The 8th Int. World Wide
Web Conf, May 1999

	Introduction
	Background on the Globe Location Service
	The Globe Location Service in Brief
	The Operations

	The Problem
	Solutions
	Options and Policies
	Distribution of Contact Records
	Handling of Requests and Distribution of New Mapping
	Advanced Solution
	Implementation Design

	Further Analysis of Advanced Solution
	Concurrency
	Fault Tolerance

	Related work
	Conclusions and Future Work

